
IP(8) Linux IP(8)

NAME
ip − show / manipulate routing, devices, policy routing and tunnels

SYNOPSIS
ip [OPTIONS] OBJECT { COMMAND | help }

OBJECT := { link | addr | route | rule | neigh | tunnel | maddr | mroute | monitor }

OPTIONS := { −V[ersion] | −s[tatistics] | −r[esolve] | −f[amily] { inet | inet6 | ipx | dnet |
link } | −o[neline] }

ip link set DEVICE { up | down | arp { on | off } |
promisc { on | off } |
allmulti { on | off } |
dynamic { on | off } |
multicast { on | off } |
txqueuelen PACKETS |
name NEWNAME |
address LLADDR | broadcast LLADDR |
mtu MTU }

ip link show [DEVICE]

ip addr { add | del } IFADDR dev STRING

ip addr { show | flush } [dev STRING] [scope SCOPE-ID] [to PREFIX] [FLAG-LIST]
[label PATTERN]

IFADDR := PREFIX | ADDR peer PREFIX [broadcast ADDR] [anycast ADDR] [label
STRING] [scope SCOPE-ID]

SCOPE-ID := [host | link | global | NUMBER]

FLAG-LIST := [FLAG-LIST] FLAG

FLAG := [permanent | dynamic | secondary | primary | tentative | deprecated]

ip route { list | flush } SELECTOR

ip route get ADDRESS [from ADDRESS iif STRING] [oif STRING] [tos TOS]

ip route { add | del | change | append | replace | monitor } ROUTE

SELECTOR := [root PREFIX] [match PREFIX] [exact PREFIX] [table TABLE ID] [
proto RTPROTO] [type TYPE] [scope SCOPE]

ROUTE := NODE SPEC [INFO SPEC]

NODE SPEC := [TYPE] PREFIX [tos TOS] [table TABLE ID] [proto RTPROTO] [
scope SCOPE] [metric METRIC]

INFO SPEC := NH OPTIONS FLAGS [nexthop NH] ...

iproute2 17 January 2002 1

IP(8) Linux IP(8)

NH := [via ADDRESS] [dev STRING] [weight NUMBER] NHFLAGS

OPTIONS := FLAGS [mtu NUMBER] [advmss NUMBER] [rtt NUMBER] [rttvar
NUMBER] [window NUMBER] [cwnd NUMBER] [ssthresh REALM] [
realms REALM]

TYPE := [unicast | local | broadcast | multicast | throw | unreachable | prohibit | black-
hole | nat]

TABLE ID := [local| main | default | all | NUMBER]

SCOPE := [host | link | global | NUMBER]

FLAGS := [equalize]

NHFLAGS := [onlink | pervasive]

RTPROTO := [kernel | boot | static | NUMBER]

ip rule [list | add | del] SELECTOR ACTION

SELECTOR := [from PREFIX] [to PREFIX] [tos TOS] [fwmark FWMARK] [dev
STRING] [pref NUMBER]

ACTION := [table TABLE ID] [nat ADDRESS] [prohibit | reject | unreachable] [
realms [SRCREALM /]DSTREALM]

TABLE ID := [local | main | default | NUMBER]

ip neigh { add | del | change | replace } { ADDR [lladdr LLADDR] [nud { permanent |
noarp | stale | reachable }] | proxy ADDR } [dev DEV]

ip neigh { show | flush } [to PREFIX] [dev DEV] [nud STATE]

ip tunnel { add | change | del | show } [NAME]
[mode { ipip | gre | sit }]
[remote ADDR] [local ADDR]
[[i|o]seq] [[i|o]key KEY] [[i|o]csum]]
[ttl TTL] [tos TOS] [[no]pmtudisc]
[dev PHYS DEV]

ADDR := { IP ADDRESS | any }

TOS := { NUMBER | inherit }

TTL := { 1 ..255 | inherit }

KEY := { DOTTED QUAD | NUMBER }

ip maddr [add | del] MULTIADDR dev STRING

ip maddr show [dev STRING]

ip mroute show [PREFIX] [from PREFIX] [iif DEVICE]

iproute2 17 January 2002 2

IP(8) Linux IP(8)

ip monitor [all | LISTofOBJECTS]

OPTIONS
−V, -Version

print the version of the ip utility and exit.

−s, −stats, −statistics
output more information. If the option appears twice or more, the amount of information
increases. As a rule, the information is statistics or some time values.

−f, −family
followed by protocol family identifier: inet, inet6 or link ,enforce the protocol family to
use. If the option is not present, the protocol family is guessed from other arguments. If
the rest of the command line does not give enough information to guess the family, ip
falls back to the default one, usually inet or any. link is a special family identifier
meaning that no networking protocol is involved.

−4 shortcut for -family inet.

−6 shortcut for −family inet6.

−0 shortcut for −family link.

−o, −oneline
output each record on a single line, replacing line feeds with the ’´ character. This is con-
venient when you want to count records with wc(1)
or to grep(1) the output.

−r, −resolve
use the system’s name resolver to print DNS names instead of host addresses.

IP - COMMAND SYNTAX
OBJECT

link - network device.

address
- protocol (IP or IPv6) address on a device.

neighbour
- ARP or NDISC cache entry.

route - routing table entry.

rule - rule in routing policy database.

maddress
- multicast address.

iproute2 17 January 2002 3

IP(8) Linux IP(8)

mroute
- multicast routing cache entry.

tunnel
- tunnel over IP.

The names of all objects may be written in full or abbreviated form, f.e. address is abbreviated
as addr or just a.

COMMAND
Specifies the action to perform on the object. The set of possible actions depends on the object
type. As a rule, it is possible to add, delete and show (or list) objects, but some objects do
not allow all of these operations or have some additional commands. The help command is avail-
able for all objects. It prints out a list of available commands and argument syntax conventions.

If no command is given, some default command is assumed. Usually it is list or, if the objects of
this class cannot be listed, help.

ip link - network device configuration
link is a network device and the corresponding commands display and change the state of devices.

ip link set - change device attributes
dev NAME (default)

NAME specifies network device to operate on.

up and down
change the state of the device to UP or DOWN.

arp on or arp off
change the NOARP flag on the device.

multicast on or multicast off
change the MULTICAST flag on the device.

dynamic on or dynamic off
change the DYNAMIC flag on the device.

name NAME
change the name of the device. This operation is not recommended if the device is run-
ning or has some addresses already configured.

txqueuelen NUMBER

txqlen NUMBER
change the transmit queue length of the device.

mtu NUMBER
change the MTU of the device.

iproute2 17 January 2002 4

IP(8) Linux IP(8)

address LLADDRESS
change the station address of the interface.

broadcast LLADDRESS

brd LLADDRESS

peer LLADDRESS
change the link layer broadcast address or the peer address when the interface is
POINTOPOINT .

Warning: If multiple parameter changes are requested, ip aborts immediately after any of the
changes have failed. This is the only case when ip can move the system to an unpredictable state.
The solution is to avoid changing several parameters with one ip link set call.

ip link show - display device attributes
dev NAME (default)

NAME specifies the network device to show. If this argument is omitted all devices are
listed.

up only display running interfaces.

ip address - protocol address management.
The address is a protocol (IP or IPv6) address attached to a network device. Each device must
have at least one address to use the corresponding protocol. It is possible to have several different
addresses attached to one device. These addresses are not discriminated, so that the term alias is
not quite appropriate for them and we do not use it in this document.

The ip addr command displays addresses and their properties, adds new addresses and deletes
old ones.

ip address add - add new protocol address.
dev NAME

the name of the device to add the address to.

local ADDRESS (default)
the address of the interface. The format of the address depends on the protocol. It is a
dotted quad for IP and a sequence of hexadecimal halfwords separated by colons for IPv6.
The ADDRESS may be followed by a slash and a decimal number which encodes the net-
work prefix length.

peer ADDRESS
the address of the remote endpoint for pointopoint interfaces. Again, the ADDRESS may
be followed by a slash and a decimal number, encoding the network prefix length. If a
peer address is specified, the local address cannot have a prefix length. The network pre-
fix is associated with the peer rather than with the local address.

broadcast ADDRESS
the broadcast address on the interface.

It is possible to use the special symbols ’+’ and ’-’ instead of the broadcast address. In
this case, the broadcast address is derived by setting/resetting the host bits of the

iproute2 17 January 2002 5

IP(8) Linux IP(8)

interface prefix.

label NAME
Each address may be tagged with a label string. In order to preserve compatibility with
Linux-2.0 net aliases, this string must coincide with the name of the device or must be
prefixed with the device name followed by colon.

scope SCOPE VALUE
the scope of the area where this address is valid. The available scopes are listed in file
/etc/iproute2/rt scopes. Predefined scope values are:

global - the address is globally valid.

site - (IPv6 only) the address is site local, i.e. it is valid inside this site.

link - the address is link local, i.e. it is valid only on this device.

host - the address is valid only inside this host.

ip address delete - delete protocol address
Arguments: coincide with the arguments of ip addr add. The device name is a required argu-
ment. The rest are optional. If no arguments are given, the first address is deleted.

ip address show - look at protocol addresses
dev NAME (default)

name of device.

scope SCOPE VAL
only list addresses with this scope.

to PREFIX
only list addresses matching this prefix.

label PATTERN
only list addresses with labels matching the PATTERN . PATTERN is a usual shell style
pattern.

dynamic and permanent
(IPv6 only) only list addresses installed due to stateless address configuration or only list
permanent (not dynamic) addresses.

tentative
(IPv6 only) only list addresses which did not pass duplicate address detection.

deprecated
(IPv6 only) only list deprecated addresses.

primary and secondary
only list primary (or secondary) addresses.

iproute2 17 January 2002 6

IP(8) Linux IP(8)

ip address flush - flush protocol addresses
This command flushes the protocol addresses selected by some criteria.

This command has the same arguments as show. The difference is that it does not run when no
arguments are given.

Warning: This command (and other flush commands described below) is pretty dangerous. If
you make a mistake, it will not forgive it, but will cruelly purge all the addresses.

With the -statistics option, the command becomes verbose. It prints out the number of deleted
addresses and the number of rounds made to flush the address list. If this option is given twice,
ip addr flush also dumps all the deleted addresses in the format described in the previous sub-
section.

ip neighbour - neighbour/arp tables management.
neighbour objects establish bindings between protocol addresses and link layer addresses for
hosts sharing the same link. Neighbour entries are organized into tables. The IPv4 neighbour ta-
ble is known by another name - the ARP table.

The corresponding commands display neighbour bindings and their properties, add new neighbour
entries and delete old ones.

ip neighbour add - add a new neighbour entry
ip neighbour change - change an existing entry
ip neighbour replace - add a new entry or change an existing one

These commands create new neighbour records or update existing ones.

to ADDRESS (default)
the protocol address of the neighbour. It is either an IPv4 or IPv6 address.

dev NAME
the interface to which this neighbour is attached.

lladdr LLADDRESS
the link layer address of the neighbour. LLADDRESS can also be null.

nud NUD STATE
the state of the neighbour entry. nud is an abbreviation for ’Neigh bour Unreachability
Detection’. The state can take one of the following values:

permanent - the neighbour entry is valid forever and can be only be
removed administratively.

noarp - the neighbour entry is valid. No attempts to validate this entry
will be made but it can be removed when its lifetime expires.

reachable - the neighbour entry is valid until the reachability timeout
expires.

iproute2 17 January 2002 7

IP(8) Linux IP(8)

stale - the neighbour entry is valid but suspicious. This option to ip
neigh does not change the neighbour state if it was valid and the
address is not changed by this command.

ip neighbour delete - delete a neighbour entry
This command invalidates a neighbour entry.

The arguments are the same as with ip neigh add, except that lladdr and nud are ignored.

Warning: Attempts to delete or manually change a noarp entry created by the kernel may result
in unpredictable behaviour. Particularly, the kernel may try to resolve this address even on a
NOARP interface or if the address is multicast or broadcast.

ip neighbour show - list neighbour entries
This commands displays neighbour tables.

to ADDRESS (default)
the prefix selecting the neighbours to list.

dev NAME
only list the neighbours attached to this device.

unused
only list neighbours which are not currently in use.

nud NUD STATE
only list neighbour entries in this state. NUD STATE takes values listed below or the
special value all which means all states. This option may occur more than once. If this
option is absent, ip lists all entries except for none and noarp.

ip neighbour flush - flush neighbour entries
This command flushes neighbour tables, selecting entries to flush by some criteria.

This command has the same arguments as show. The differences are that it does not run when
no arguments are given, and that the default neighbour states to be flushed do not include per-
manent and noarp.

With the -statistics option, the command becomes verbose. It prints out the number of deleted
neighbours and the number of rounds made to flush the neighbour table. If the option is given
twice, ip neigh flush also dumps all the deleted neighbours.

ip route - routing table management
Manipulate route entries in the kernel routing tables keep information about paths to other net-
worked nodes.

Route types:

unicast - the route entry describes real paths to the destinations covered by
the route prefix.

iproute2 17 January 2002 8

IP(8) Linux IP(8)

unreachable - these destinations are unreachable. Packets are discarded and
the ICMP message host unreachable is generated. The local senders get an
EHOSTUNREACH error.

blackhole - these destinations are unreachable. Packets are discarded silently.
The local senders get an EINVAL error.

prohibit - these destinations are unreachable. Packets are discarded and the
ICMP message communication administratively prohibited is generated. The
local senders get an EACCES error.

local - the destinations are assigned to this host. The packets are looped back
and delivered locally.

broadcast - the destinations are broadcast addresses. The packets are sent as
link broadcasts.

throw - a special control route used together with policy rules. If such a route
is selected, lookup in this table is terminated pretending that no route was
found. Without policy routing it is equivalent to the absence of the route in the
routing table. The packets are dropped and the ICMP message net unreachable
is generated. The local senders get an ENETUNREACH error.

nat - a special NAT route. Destinations covered by the prefix are considered to
be dummy (or external) addresses which require translation to real (or internal)
ones before forwarding. The addresses to translate to are selected with the
attribute via.

anycast - not implemented the destinations are anycast addresses assigned to
this host. They are mainly equivalent to local with one difference: such
addresses are invalid when used as the source address of any packet.

multicast - a special type used for multicast routing. It is not present in nor-
mal routing tables.

Route tables: Linux-2.x can pack routes into several routing tables identified by a number in the
range from 1 to 255 or by name from the file /etc/iproute2/rt tables main table (ID 254) and
the kernel only uses this table when calculating routes.

Actually, one other table always exists, which is invisible but even more important. It is the local
table (ID 255). This table consists of routes for local and broadcast addresses. The kernel main-
tains this table automatically and the administrator usually need not modify it or even look at it.

The multiple routing tables enter the game when policy routing is used.

iproute2 17 January 2002 9

IP(8) Linux IP(8)

ip route add - add new route
ip route change - change route
ip route replace - change or add new one

to TYPE PREFIX (default)
the destination prefix of the route. If TYPE is omitted, ip assumes type unicast. Other
values of TYPE are listed above. PREFIX is an IP or IPv6 address optionally followed
by a slash and the prefix length. If the length of the prefix is missing, ip assumes a full-
length host route. There is also a special PREFIX default - which is equivalent to IP
0/0 or to IPv6 ::/0.

tos TOS

dsfield TOS
the Type Of Service (TOS) key. This key has no associated mask and the longest match
is understood as: First, compare the TOS of the route and of the packet. If they are not
equal, then the packet may still match a route with a zero TOS. TOS is either an 8 bit
hexadecimal number or an identifier from /etc/iproute2/rt dsfield.

metric NUMBER

preference NUMBER
the preference value of the route. NUMBER is an arbitrary 32bit number.

table TABLEID
the table to add this route to. TABLEID may be a number or a string from the file
/etc/iproute2/rt tables. If this parameter is omitted, ip assumes the main table,
with the exception of local , broadcast and nat routes, which are put into the local ta-
ble by default.

dev NAME
the output device name.

via ADDRESS
the address of the nexthop router. Actually, the sense of this field depends on the route
type. For normal unicast routes it is either the true next hop router or, if it is a direct
route installed in BSD compatibility mode, it can be a local address of the interface. For
NAT routes it is the first address of the block of translated IP destinations.

src ADDRESS
the source address to prefer when sending to the destinations covered by the route prefix.

realm REALMID
the realm to which this route is assigned. REALMID may be a number or a string from
the file /etc/iproute2/rt realms.

mtu MTU

mtu lock MTU
the MTU along the path to the destination. If the modifier lock is not used, the MTU
may be updated by the kernel due to Path MTU Discovery. If the modifier lock is used,
no path MTU discovery will be tried, all packets will be sent without the DF bit in IPv4
case or fragmented to MTU for IPv6.

iproute2 17 January 2002 10

IP(8) Linux IP(8)

window NUMBER
the maximal window for TCP to advertise to these destinations, measured in bytes. It
limits maximal data bursts that our TCP peers are allowed to send to us.

rtt NUMBER
the initial RTT (’Round Trip Time’) estimate.

rttvar NUMBER (2.3.15+ only)
the initial RTT variance estimate.

ssthresh NUMBER (2.3.15+ only)
an estimate for the initial slow start threshold.

cwnd NUMBER (2.3.15+ only)
the clamp for congestion window. It is ignored if the lock flag is not used.

advmss NUMBER (2.3.15+ only)
the MSS (’Maximal Segment Size’) to advertise to these destinations when establishing
TCP connections. If it is not given, Linux uses a default value calculated from the first
hop device MTU. (If the path to these destination is asymmetric, this guess may be
wrong.)

reordering NUMBER (2.3.15+ only)
Maximal reordering on the path to this destination. If it is not given, Linux uses the
value selected with sysctl variable net/ipv4/tcp reordering.

nexthop NEXTHOP
the nexthop of a multipath route. NEXTHOP is a complex value with its own syntax
similar to the top level argument lists:

via ADDRESS - is the nexthop router.

dev NAME - is the output device.

weight NUMBER - is a weight for this element of a multipath route
reflecting its relative bandwidth or quality.

scope SCOPE VAL
the scope of the destinations covered by the route prefix. SCOPE VAL may be a number
or a string from the file /etc/iproute2/rt scopes. If this parameter is omitted, ip
assumes scope global for all gatewayed unicast routes, scope link for direct unicast
and broadcast routes and scope host for local routes.

protocol RTPROTO
the routing protocol identifier of this route. RTPROTO may be a number or a string
from the file /etc/iproute2/rt protos. If the routing protocol ID is not given, ip
assumes protocol boot (i.e. it assumes the route was added by someone who doesn’t
understand what they are doing). Several protocol values have a fixed interpretation.
Namely:

iproute2 17 January 2002 11

IP(8) Linux IP(8)

redirect - the route was installed due to an ICMP redirect.

kernel - the route was installed by the kernel during autoconfiguration.

boot - the route was installed during the bootup sequence. If a routing
daemon starts, it will purge all of them.

static - the route was installed by the administrator to override
dynamic routing. Routing daemon will respect them and, probably,
even advertise them to its peers.

ra - the route was installed by Router Discovery protocol.

The rest of the values are not reserved and the administrator is free to assign (or not to
assign) protocol tags.

onlink pretend that the nexthop is directly attached to this link, even if it does not match any
interface prefix.

equalize
allow packet by packet randomization on multipath routes. Without this modifier, the
route will be frozen to one selected nexthop, so that load splitting will only occur on per-
flow base. equalize only works if the kernel is patched.

ip route delete - delete route
ip route del has the same arguments as ip route add, but their semantics are a bit different.

Key values (to, tos, preference and table) select the route to delete. If optional attributes are
present, ip verifies that they coincide with the attributes of the route to delete. If no route with
the given key and attributes was found, ip route del fails.

ip route show - list routes
the command displays the contents of the routing tables or the route(s) selected by some criteria.

to SELECTOR (default)
only select routes from the given range of destinations. SELECTOR consists of an
optional modifier (root, match or exact) and a prefix. root PREFIX selects routes
with prefixes not shorter than PREFIX . F.e. root 0/0 selects the entire routing table.
match PREFIX selects routes with prefixes not longer than PREFIX . F.e. match
10.0/16 selects 10.0/16 , 10/8 and 0/0 , but it does not select 10.1/16 and 10.0.0/24 .
And exact PREFIX (or just PREFIX) selects routes with this exact prefix. If neither of
these options are present, ip assumes root 0/0 i.e. it lists the entire table.

tos TOS
dsfield TOS only select routes with the given TOS.

iproute2 17 January 2002 12

IP(8) Linux IP(8)

table TABLEID
show the routes from this table(s). The default setting is to show tablemain. TABLEID
may either be the ID of a real table or one of the special values:

all - list all of the tables.

cache - dump the routing cache.

cloned

cached
list cloned routes i.e. routes which were dynamically forked from other routes because
some route attribute (f.e. MTU) was updated. Actually, it is equivalent to table cache.

from SELECTOR
the same syntax as for to, but it binds the source address range rather than destinations.
Note that the from option only works with cloned routes.

protocol RTPROTO
only list routes of this protocol.

scope SCOPE VAL
only list routes with this scope.

type TYPE
only list routes of this type.

dev NAME
only list routes going via this device.

via PREFIX
only list routes going via the nexthop routers selected by PREFIX .

src PREFIX
only list routes with preferred source addresses selected by PREFIX .

realm REALMID

realms FROMREALM/TOREALM
only list routes with these realms.

ip route flush - flush routing tables
this command flushes routes selected by some criteria.

The arguments have the same syntax and semantics as the arguments of ip route show, but
routing tables are not listed but purged. The only difference is the default action: show dumps
all the IP main routing table but flush prints the helper page.

With the -statistics option, the command becomes verbose. It prints out the number of deleted
routes and the number of rounds made to flush the routing table. If the option is given twice, ip

iproute2 17 January 2002 13

IP(8) Linux IP(8)

route flush also dumps all the deleted routes in the format described in the previous subsection.

ip route get - get a single route
this command gets a single route to a destination and prints its contents exactly as the kernel sees
it.

to ADDRESS (default)
the destination address.

from ADDRESS
the source address.

tos TOS

dsfield TOS
the Type Of Service.

iif NAME
the device from which this packet is expected to arrive.

oif NAME
force the output device on which this packet will be routed.

connected
if no source address (option from) was given, relookup the route with the source set to
the preferred address received from the first lookup. If policy routing is used, it may be a
different route.

Note that this operation is not equivalent to ip route show. show shows existing routes. get
resolves them and creates new clones if necessary. Essentially, get is equivalent to sending a
packet along this path. If the iif argument is not given, the kernel creates a route to output pack-
ets towards the requested destination. This is equivalent to pinging the destination with a subse-
quent ip route ls cache, however, no packets are actually sent. With the iif argument, the ker-
nel pretends that a packet arrived from this interface and searches for a path to forward the
packet.

ip rule - routing policy database management
Rules in the routing policy database control the route selection algorithm.

Classic routing algorithms used in the Internet make routing decisions based only on the destina-
tion address of packets (and in theory, but not in practice, on the TOS field).

In some circumstances we want to route packets differently depending not only on destination
addresses, but also on other packet fields: source address, IP protocol, transport protocol ports or
even packet payload. This task is called ’policy routing’.

To solve this task, the conventional destination based routing table, ordered according to the
longest match rule, is replaced with a ’routing policy database’ (or RPDB), which selects routes
by executing some set of rules.

iproute2 17 January 2002 14

IP(8) Linux IP(8)

Each policy routing rule consists of a selector and an action predicate. The RPDB is scanned
in the order of increasing priority. The selector of each rule is applied to {source address, destina-
tion address, incoming interface, tos, fwmark} and, if the selector matches the packet, the action
is performed. The action predicate may return with success. In this case, it will either give a
route or failure indication and the RPDB lookup is terminated. Otherwise, the RPDB program
continues on the next rule.

Semantically, natural action is to select the nexthop and the output device.

At startup time the kernel configures the default RPDB consisting of three rules:

1. Priority: 0, Selector: match anything, Action: lookup routing table local (ID 255). The
local table is a special routing table containing high priority control routes for local and
broadcast addresses.

Rule 0 is special. It cannot be deleted or overridden.

2. Priority: 32766, Selector: match anything, Action: lookup routing table main (ID 254).
The main table is the normal routing table containing all non-policy routes. This rule
may be deleted and/or overridden with other ones by the administrator.

3. Priority: 32767, Selector: match anything, Action: lookup routing table default (ID 253).
The default table is empty. It is reserved for some post-processing if no previous default
rules selected the packet. This rule may also be deleted.

Each RPDB entry has additional attributes. F.e. each rule has a pointer to some routing table.
NAT and masquerading rules have an attribute to select new IP address to translate/masquerade.
Besides that, rules have some optional attributes, which routes have, namely realms. These val-
ues do not override those contained in the routing tables. They are only used if the route did not
select any attributes.

The RPDB may contain rules of the following types:

unicast - the rule prescribes to return the route found in the routing table ref-
erenced by the rule.

blackhole - the rule prescribes to silently drop the packet.

unreachable - the rule prescribes to generate a ’Network is unreachable’ error.

prohibit - the rule prescribes to generate ’Communication is administratively
prohibited’ error.

nat - the rule prescribes to translate the source address of the IP packet into
some other value.

ip rule add - insert a new rule
ip rule delete - delete a rule

type TYPE (default)
the type of this rule. The list of valid types was given in the previous subsection.

iproute2 17 January 2002 15

IP(8) Linux IP(8)

from PREFIX
select the source prefix to match.

to PREFIX
select the destination prefix to match.

iif NAME
select the incoming device to match. If the interface is loopback, the rule only matches
packets originating from this host. This means that you may create separate routing
tables for forwarded and local packets and, hence, completely segregate them.

tos TOS

dsfield TOS
select the TOS value to match.

fwmark MARK
select the fwmark value to match.

priority PREFERENCE
the priority of this rule. Each rule should have an explicitly set unique priority value.

table TABLEID
the routing table identifier to lookup if the rule selector matches.

realms FROM/TO
Realms to select if the rule matched and the routing table lookup succeeded. Realm TO
is only used if the route did not select any realm.

nat ADDRESS
The base of the IP address block to translate (for source addresses). The ADDRESS may
be either the start of the block of NAT addresses (selected by NAT routes) or a local host
address (or even zero). In the last case the router does not translate the packets, but
masquerades them to this address.

Warning: Changes to the RPDB made with these commands do not become active
immediately. It is assumed that after a script finishes a batch of updates, it flushes the
routing cache with ip route flush cache.

ip rule show - list rules
This command has no arguments.

ip maddress - multicast addresses management
maddress objects are multicast addresses.

ip maddress show - list multicast addresses
dev NAME (default)

the device name.

iproute2 17 January 2002 16

IP(8) Linux IP(8)

ip maddress add - add a multicast address
ip maddress delete - delete a multicast address

these commands attach/detach a static link layer multicast address to listen on the interface.
Note that it is impossible to join protocol multicast groups statically. This command only man-
ages link layer addresses.

address LLADDRESS (default)
the link layer multicast address.

dev NAME
the device to join/leave this multicast address.

ip mroute - multicast routing cache management
mroute objects are multicast routing cache entries created by a user level mrouting daemon (f.e.
pimd or mrouted).

Due to the limitations of the current interface to the multicast routing engine, it is impossible to
change mroute objects administratively, so we may only display them. This limitation will be
removed in the future.

ip mroute show - list mroute cache entries
to PREFIX (default)

the prefix selecting the destination multicast addresses to list.

iif NAME
the interface on which multicast packets are received.

from PREFIX
the prefix selecting the IP source addresses of the multicast route.

ip tunnel - tunnel configuration
tunnel objects are tunnels, encapsulating packets in IPv4 packets and then sending them over the
IP infrastructure.

ip tunnel add - add a new tunnel
ip tunnel change - change an existing tunnel
ip tunnel delete - destroy a tunnel

name NAME (default)
select the tunnel device name.

mode MODE
set the tunnel mode. Three modes are currently available: ipip, sit and gre.

remote ADDRESS
set the remote endpoint of the tunnel.

local ADDRESS
set the fixed local address for tunneled packets. It must be an address on another inter-
face of this host.

iproute2 17 January 2002 17

IP(8) Linux IP(8)

ttl N set a fixed TTL N on tunneled packets. N is a number in the range 1--255. 0 is a special
value meaning that packets inherit the TTL value. The default value is: inherit.

tos T

dsfield T
set a fixed TOST on tunneled packets. The default value is: inherit.

dev NAME
bind the tunnel to the device NAME so that tunneled packets will only be routed via this
device and will not be able to escape to another device when the route to endpoint
changes.

nopmtudisc
disable Path MTU Discovery on this tunnel. It is enabled by default. Note that a fixed
ttl is incompatible with this option: tunnelling with a fixed ttl always makes pmtu discov-
ery.

key K

ikey K

okey K
(only GRE tunnels) use keyed GRE with key K . K is either a number or an IP
address-like dotted quad. The key parameter sets the key to use in both directions. The
ikey and okey parameters set different keys for input and output.

csum, icsum, ocsum
(only GRE tunnels) generate/require checksums for tunneled packets. The ocsum
flag calculates checksums for outgoing packets. The icsum flag requires that all input
packets have the correct checksum. The csum flag is equivalent to the combination
icsum ocsum.

seq, iseq, oseq
(only GRE tunnels) serialize packets. The oseq flag enables sequencing of outgoing
packets. The iseq flag requires that all input packets are serialized. The seq flag is
equivalent to the combination iseq oseq. It isn’t work. Don’t use it.

ip tunnel show - list tunnels
This command has no arguments.

ip monitor and rtmon - state monitoring
The ip utility can monitor the state of devices, addresses and routes continuously. This option
has a slightly different format. Namely, the monitor command is the first in the command line
and then the object list follows:

ip monitor [all | LISTofOBJECTS]

OBJECT-LIST is the list of object types that we want to monitor. It may contain link, address
and route. If no file argument is given, ip opens RTNETLINK, listens on it and dumps state
changes in the format described in previous sections.

If a file name is given, it does not listen on RTNETLINK, but opens the file containing

iproute2 17 January 2002 18

IP(8) Linux IP(8)

RTNETLINK messages saved in binary format and dumps them. Such a history file can be gener-
ated with the rtmon utility. This utility has a command line syntax similar to ip monitor. Ide-
ally, rtmon should be started before the first network configuration command is issued. F.e. if
you insert:

rtmon file /var/log/rtmon.log

in a startup script, you will be able to view the full history later.

Certainly, it is possible to start rtmon at any time. It prepends the history with the state snap-
shot dumped at the moment of starting.

HISTORY
ip was written by Alexey N. Kuznetsov and added in Linux 2.2.

SEE ALSO
tc(8)
IP Command reference ip-cref.ps
IP tunnels ip-cref.ps

AUTHOR
Manpage maintained by Michail Litvak <mci@owl.openwall.com>

iproute2 17 January 2002 19

